3.343 \(\int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=108 \[ \frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 b B \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}} \]

[Out]

-2*b*B*sin(d*x+c)/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/(a^2-b^2)/d/((a+b*cos(d*x+c))/(a+b))^(
1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {21, 2664, 2655, 2653} \[ \frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 b B \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a*B + b*B*Cos[c + d*x])/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(2*B*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/((a^2 - b^2)*d*Sqrt[(a + b*Cos[c + d*x])/
(a + b)]) - (2*b*B*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2664

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^(n +
1))/(d*(n + 1)*(a^2 - b^2)), x] + Dist[1/((n + 1)*(a^2 - b^2)), Int[(a + b*Sin[c + d*x])^(n + 1)*Simp[a*(n + 1
) - b*(n + 2)*Sin[c + d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && Integer
Q[2*n]

Rubi steps

\begin {align*} \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx &=B \int \frac {1}{(a+b \cos (c+d x))^{3/2}} \, dx\\ &=-\frac {2 b B \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}-\frac {(2 B) \int \frac {-\frac {a}{2}-\frac {1}{2} b \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a^2-b^2}\\ &=-\frac {2 b B \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {B \int \sqrt {a+b \cos (c+d x)} \, dx}{a^2-b^2}\\ &=-\frac {2 b B \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {\left (B \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{\left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\\ &=\frac {2 B \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 b B \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 84, normalized size = 0.78 \[ \frac {B \left (2 (a+b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-2 b \sin (c+d x)\right )}{d (a-b) (a+b) \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*B + b*B*Cos[c + d*x])/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(B*(2*(a + b)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - 2*b*Sin[c + d*x]))/((
a - b)*(a + b)*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 2.14, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \cos \left (d x + c\right ) + a} B}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)*B/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 1.71, size = 218, normalized size = 2.02 \[ -\frac {2 B \left (\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b +2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{\left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x)

[Out]

-2*B*((sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1
/2*c),(-2*b/(a-b))^(1/2))*a-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*E
llipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b+2*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/(a-b)/(a+b)/sin
(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {B\,a+B\,b\,\cos \left (c+d\,x\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*a + B*b*cos(c + d*x))/(a + b*cos(c + d*x))^(5/2),x)

[Out]

int((B*a + B*b*cos(c + d*x))/(a + b*cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________